Automatic multilabel detection of ICD10 codes in Dutch cardiology discharge letters using neural networks

نویسندگان

چکیده

Abstract Standard reference terminology of diagnoses and risk factors is crucial for billing, epidemiological studies, inter/intranational comparisons diseases. The International Classification Disease (ICD) a standardized widely used method, but the manual classification an enormously time-consuming endeavor. Natural language processing together with machine learning allows automated structuring using ICD-10 codes, limited performance models, necessity gigantic datasets, poor reliability terminal parts these codes restricted clinical usability. We aimed to create high performing pipeline reliable in free medical text cardiology. focussed on frequently well-defined three- four-digit that still have enough granularity be clinically relevant such as atrial fibrillation (I48), acute myocardial infarction (I21), or dilated cardiomyopathy (I42.0). Our uses deep neural network known Bidirectional Gated Recurrent Unit Neural Network was trained tested 5548 discharge letters validated 5089 procedural letters. As practice may labeled more than one code, we assessed single- multilabel main cardiovascular factors. investigated both entire body only summary paragraph, supplemented by age sex. Given privacy-sensitive information included letters, added de-identification step. high, F1 scores 0.76–0.99 three-character 0.87–0.98 four-character best when complete Adding variables age/sex did not affect results. For model interpretability, word coefficients were provided qualitative assessment manually performed. Because its performance, this can useful decrease administrative burden classifying serve scaffold reimbursement research applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Automatic laughter detection using neural networks

Laughter recognition is an underexplored area of research. Our goal in this work was to develop an accurate and efficient method to recognize laughter segments, ultimately for the purpose of speaker recognition. Previous work has classified presegmented data as to the presence of laughter using SVMs, GMMs, and HMMs. In this work, we have extended the stateof-the-art in laughter recognition by e...

متن کامل

Automatic diagnosis classification of patient discharge letters.

CAIRN (Computer Assisted Medical Information Resource Navigation) is a prototyping System that allows flexible medical data storage and retrieval supporting medical informatics research. In this paper methods that automate the selection of ICD-9 diagnosis (International Classification of Diseases and Diagnoses, 9th Revision) are investigated. We present the Text Data Mining module extension of ...

متن کامل

Automatic Matching of ICD-10 codes to Diagnoses in Discharge Letters

This paper presents an approach for automatic mapping of International Classification of Diseases 10th revision (ICD-10) codes to diagnoses extracted from discharge letters. The proposed algorithm is designed for processing free text documents in Bulgarian language. Diseases are often described in the medical patient records as free text using terminology, phrases and paraphrases which differ s...

متن کامل

Hierarchical Multilabel Protein Function Prediction Using Local Neural Networks

Protein function predictions are usually treated as classification problems where each function is regarded as a class label. However, different from conventional classification problems, they have some specificities that make the classification task more complex. First, the problem classes (protein functions) are usually hierarchically structured, with superclasses and subclasses. Second, prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj digital medicine

سال: 2021

ISSN: ['2398-6352']

DOI: https://doi.org/10.1038/s41746-021-00404-9